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The authors describe mathematically the processes of metal melting and crystallization in a crucible rotating 

around a heater as well as a migration model of nonmetallic impurities in the melt. Numerical methods for 

solving problems and results of a computation experiment are described. 

In a crucible of an experimental setup rotating around a heater a metal becomes heated and melts (see Fig. 

1). Here, in the liquidus (melt) phase the migration of nonmetallic impurities due to a centrifugal force that develops 

as a result of centrifuging is observed. After some time the heater is removed from the setup and the phase of melt 

cooling and crystallization proceeds. Along the axis of the ingot obtained, a set of crystallization conditions, such 

as a cooling rate, pressure, and concentration of nonmetallic impurities are implemented. A comparison of the 

structure and properties of an ingot metal with crystallization conditions is of scientific and practical value [1, 2 ]. 

Up to now the greatest emphasis has been given to metallographic analysis of the problem. Theoretical studies of 

the purification of a centrifuged melt, based on mathematical modeling, are covered inadequately in the current 

literature. Related problems have been discussed, for instance, in [1, 3, 4]. Below we suggest a rational 

mathematical model of thermohydrodynamic processes under high-temperature centrifuging conditions that permits 

optimization of a full-scale experiment. 

We consider the steady-state rotation of a crucible when the melt has no flows. 
Thermal Processes. The dynamics of the temperature field 9(x, r, T) in an ingot may be described by the 

boundary-value problem 

Oh_  1 0 r2 ~ + 0 __00 (1) 
P OT r Or fir -~--~2 Ox ' 

0 < T < T  e , O < r < r o ( X  ) 0 < X < I "  013=0=00 ;  20011 ~ q .  

' ' On B 

Here l is the crucible length, the function ro(x) describes its shape; p is the metal density; 2(9) is the thermal 

conductivity; T is the time; T e is the time of the technological process; 9o is the initial temperature; h(O) is the 
enthalpy. In a first approximation we may consider that 

c O + L / 2 ,  O>Ot, , (2) 

r / 2 ,  0 < i ,  

where c is the heat capacity; L is the latent heat of melting. Problem (1), (2) is written in the form of a generalized 

statement of the two-phase Stefan problem [5] and allows modeling of melting-crystallization processes. 

Preliminary analysis of the boundary conditions showed that for real geometric and thermophysical parameters of 

the process the density of the heat flux q across the open surface of the crucible (x = O) is by one or two orders of 
magnitude higher than on the walls. In this case heat is mainly transferred by diffuse radiation while heat 
conduction and free convection in the gap between the heater and the crucible may be neglected. Therefore the 
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Fig. 1. Schematic of the experimental setup: 1) heater; 2) crucible; 3) 

refractory lining. 

value of q in boundary condition (1) may be assumed equal to zero everywhere with the exception of the open 

surface, x = O, where in the heating stage we have [6 ]: 

A 4  ^ _~oo = ~  (1 - o / 0 4 )  , x = 0 ,  ~ < ~h. (3) 

In (3), a --- 5.67.10 -8 W/(m 2" K 4) is the Stefan-Boltzmann constant; r h is the time of source action; and the sign 

^ indicates the absolute temperature 0"-- 0 + 273. At the cooling stage (% < r < re) q may be determined by solving 

the problem of radiative heat transfer. Under the assumption that the temperature of the open crucible surface and 

that of the refractory lining are equal, we employ the well-known solution of the problem of the radiation of the 

inner surface of a cylindrical groove [6] and obtain the following rough estimate: 

A 

q = - 0 . 1 4 a O  4 ,  x = O ,  r>~-h.  (4) 

Note that along with condition (4) other models of cooling, e.g., by water, may be considered. In model (1)-(4) 

we pass to the dimensionless quantities 

o x r ~a ~ 0 - 0 ~  h - ~ 0  i 
X = - - ,  R = - ,  t =  k = - -  T - - - ,  H -  , 

l l ~ ' ;t o' o~ -  Oo ~ (o~- Oo~ 

2% 

L ql aO 4 l 
K o -  , Q = 2 o  ' ,  Qh-; to  , Qc=O'14Qh" 

c (0 : -  00) (0 : -  00) (0 : -  00) 
(5) 

In formulas (5) the superscript "0" indicates quantities calculated at some "characteristic" temperature 0~ 
a ~ =20/cp is the thermal diffusivity; Ko is the Kosovich number. Relations (1)-(4) acquire the form 

OH 1 0 n k  OT 0 . a T  (6) 
Ot - n O~ -g~ + T 2  ~-g2  ' 

O < t < t e ,  0 < X <  1, 0 < R < R 0 ( X ) ;  

H(7') = T + s g n ( 7 ' ) K o / 2 ;  t = 0 ;  T = -  1; 
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Oh (1 - T 4) ,  t < th, X = O, 
k aT (7) -~-'~n = - Qc ~'4,  th < t < t e ,  X = 0 ,  

O, x ~ O .  

In formula (7) the expression 

= ~'/~h = [Of + 273 + T (Of - ~90)]/[~gf + 273 + T h (~gf - ~90) ] 

may be simplified if we take into account that 00 < Of, 273 < Of. Then 

1 + T  h-oi (8) 
T =  l + T h ,  rh-~i_eO" 

Thus, the thermal processes in an ingot are described by model (6)-(8), which contains six dimensionless 

parameters, namely, the heating and cooling intensities Qh, Th, Qc, the duration of the phases of the technological 

process th, te, the criterion Ko, and also the function k (T) .  The last two quantities are unambiguously determined 

by the thermophysical properties of a metal, and therefore a variety of technological situations are determined, in 

fact, by the first five parameters. Naturally, the crucible shape Ro(X)  also influences the solution of the problem. 

However, it is close to a cylinder and there are no heat fluxes at the boundary R -- R0. In this case the temperature 

field will depend weakly on the radius R. Therefore in practical calculations instead of (6) we may use the quasi- 

one-dimensional equation that is valid along the ingot axis R -- 0: 

OH 1 0 2 OT 
- 2 - ~ R o k - ~ '  O < t < t e '  0 < X < I .  (9) 

Ot R o 

In this formulation, the function R0(X) has the meaning of the radius of a heat flux tube and is determined up to 

a multiplier. 

Migration of Particles. Impurities contained in the metal may rise to the melt surface due to centrifuging 

with the velocity 

2 gA z 2 
v = - ( 1 -  Kp) --~- , g = co (rh + 6 + x)  " (10) 

g 

In the Stokes formula (10) r h is the heater radius; ~ is the gap (see Fig. 1); co is the angular velocity; v(O) is the 

kinematic viscosity of the melt; A is the effective radius of a particle; Kp = p . / p ,  p .  is the density of nonmetallic 

inclusions. As a result, there is a change in the particle concentration. For low impurity concentrations c(x,  r, ~:) 

typical of metals this process is adequately described by the equation 

Oc 
~-~ = V (dVc + ve) .  (i1) 

Equations (10), (11), valid only in the liquid phase, may be extended to the entire region by defining the viscosity 

and diffusion coefficients in the solid phase in the following way: v = ~, d = 0 at ~9 >_ Of. Then in order to formulate 

the problem of the concentration it is sufficient to prescribe the boundary conditions 

Oc 
c = c  o at ~ = 0 ,  dffnn + v c = O  on F.  

Passing to variables (5) in (11), (12) and introducing additionally the quantities 

d o 
D =  d / d  O, C = c / c  o , K v = v / v  O, K a = A / A  O, P r = - - o ,  V -  - -  

a 

(12) 

X + X  1 
K71 

1 + X  1 

(13) 
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2 
X1 r h + 8 Ol/~a 0 2 ( 1 - K p ) ~ o  2 (r h + cS + l) A 0 

- - - ' l  P e -  a~ ' v = 9v o 

we obtain the formulation of the convective diffusion problem in dimensionless form. By analogy with the heat 
problem we may write at once the model of particle migration along the ingot axis 

OC 1 0 
- 2 R Q ,  0 < X < I ,  O < t < t e ,  

Ot R o OX 

Q = - P r D ~ x + P e V C ;  Q l x = o = Q I x = l = O ;  Clt=0 = 1. 

(14) 

In the conversion formulas (13) the superscript 0, as before, points to the characteristic temperature 0 ~ while A 0 

is some fixed size of a particle. The criterion Ka is introduced to describe the dynamics of the concentration field 

of particles of different size using model (14). For this, as follows from (13), a series of solutions of problem (14) 

must be obtained for different Peclet numbers. Since the design dimension X1 is practically constant, the functions 

Kv and D are determined by the temperature T, and the Prandtl number Pr depends only on the material, Pe is 

the main similarity parameter and provides information on the size of the particles, their density, the rotational 

speed, and the geometric size of the setup in the problem under consideration. 

Algorithm of Numerical Implementation. To solve Stefan problem (7)-(9), we adopt the approach [7 ] based 

on the representation 

0__ff_H OT (15) 
= [1 + (T) ] - f f  

ot 

and "smearing" of the Dirac 6-function. We use the approximation 

0,  IT[ > e,  (16) 
(T) = @r ( z ~ )  

- {cos , IT[ 

where e is the regularization parameter. For the problem obtained after substitution of (15) into Eq. (9), we have 

written an implicit two-layer difference scheme. It represents a system of nonlinear equations where the nonlinearity 

"sources" are the representation (15), (16), the dependence k(T) in Eq. (9), and boundary condition (7). In 

connection with this, the iteration technique has been employed to solve the problem on each time layer. Two 

iteration levels are considered: in the external cycle the functions k(T) and 6(T) are refined using the newly 

calculated values of T, while in the internal Newton process a boundary value is determined from condition (7). 

The linearized system of equations is solved by the elimination method [7 ]. To check the accuracy of the algorithm 

we made a series of calculations using denser networks and compared numerical solutions with exact self-similar 
solutions of the Stefan problem and calculation results obtained by other numerical methods [8, 9 ]. In the course 

of testing, optimum values of the scheme parameters (e, network steps with respect to X and t) have been 

determined. 
The problem of impurity migration is linear; however a numerical solution of it presents difficulties because 

the coefficients D and V decrease sharply to zero in a small neighborhood of a phase boundary. Moreover, and the 
Prandtl number is small, the Peclet criterion may change in a very wide range due, mainly, to the need to model 

the migration of particles of different sizes. In particular, at Pe >> 1 near the open surface, X -- 0, a boundary layer 

is inevitably formed. Taking into account these circumstances, we used a nonuniform network in the calculations 
that becomes denser as X --, 0, and we approximated, in building the difference scheme, the convective part of the 
operator with account for the sign of V so as to intensify the diagonal predominance of the matrix of the system of 
finite-difference equations. The numerical algorithm was tested using a sequence of denser networks. It was 
confirmed that the difference network was conservative and provided constancy of the total concentration of particles 
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Fig. 2. Dynamics of the temperature  field: a) heating and melting; b) cooling 

and crystallization. The  dashed line indicates the dimensionless temperature  

of phase transitions T/-~  O. 
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Fig. 3. Concentration along the ingot axis versus time; Pr  = 0.016; Pe = 1.47. 

in an ingot. Network parameters  were found that ensured acceptable accuracy in a wide range of the coefficients 

of problem (14). As already mentioned,  the coefficients V and D are prescribed as functions of the tempera ture  T. 

Therefore  in solving the problem for the concentration the function T ( X ,  t) was reproduced bilinearly on the 

rectangle X i < X < X i + l ,  tj < t < tj+l using the solution of the heat problem as nodal values. 

Calculat ion Results. We sha l l  c o n s i d e r  a m o d e l  c en t r i f ug ing  p rocess  for  a cas t  i ron  ingot .  T h e  

thermophysical  properties of the metal  are prescribed as follows: 0f = 1153~ )l ~ = 17 W / ( m .  K), c = 962 J / ( k g .  K), 

L = 285 kg/kg,  p = 7000 k g / m  a, v 0 = 3-10 -7  mZ/sec,  d o = 4.10 -8 m2/sec [10]. The tempera ture  0 ~ = 1250 ~ is 

chosen as the characteristic one, and at the initial moment  0 -- 0o = 25~ We assume that  nonmetallic impurities 

have the characteristic size A ~ -- 2 .10  -6  m and dens i typ* = 2.25 k g / m  a and the geometric dimensions are as follows: 

l = 52 mm, r0(0) = 22 mm, ro(/) -- 16 ram, 6 = 3 mm. The  heat source is heated to the tempera ture  Oh -- 2000~ 

and its t ime of action is r h = 30 min; the total t ime of the process is T e = 60 rain. The  rotational speed is a~ = 60 

sec-1.  Using formulas (5), (13), we determine characteristic scales of the process such as the velocity of floating 

up of the particles v ~ = 7- 10 -5  m/sec ,  the specific heat  flux q0 = 20(0i _ tgo) / l  ~ 105 W / m  2, the ingot heating 

time 3 ~ = 12/a  ~ ~ 17 rain, the time of mel tpur i f ica t ion  from particles with size A ~ l / v  ~ .~ 12 min. The  pressure 

along the ingot axis increases from 0.01 MPa at x = 0 to 0.03 MPa at x = l. Simultaneously, we calculate the 
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Fig. 4. Concentration distribution versus the Pe number: a) t --- 0.9, b) 3. 

dimensionless parameters that are the initial data for mathematical model (7), (9), (14). We obtain Ko --- 0.26, Pr 

- 0.016, Pe -- 1.47, th = 1.5, te -- 3, Qh --- 3.48, Qc = 0.48, T h -- 0.66, Kp = 0.32, Ka = t, X[ = 0.5. In the calcu/ations 

given below, instead of Qc = 0.48, which corresponds to natural cooling by radiation, the value Qc = 8 is adopted, 

which gives a more dynamic picture of the process. In some sense such a high intensity of heat release may be 

interpreted as forced cooling. 

Figure 2 shows the dynamics of the temperature field T(X, t), the heating stage is depicted in Fig. 2a, and 

the cooling phase in Fig. 2b. We may follow the propagation of the melting-crystallization front using the 

intersection of the graphs of T with the level T f -  0. 

The distribution of the relative concentration along the X-axis at different moments of time is shown in 

Fig. 3. The rise of particles to the free surface, the formation of a boundary layer there, and the melt purification 

in the main part of the ingot are clearly seen. These results are obtained for particles of the same size Ka = 1. In 

a real metal, there are, naturally, impurity particles of different sizes. Within the framework of the suggested model, 

the dynamics of the concentration field of particles of each size may be studied independently by prescribing the 

Peclet number corresponding to this size. The dependence of the process on the Pe number is shown in Fig. 4. 

Note that under the chosen conditions the melt is quickly purified of comparatively coarse particles (Pe > 1), while 

fine (Pe < 1) foreign particles are centrifuged to a substantially lesser degree. Knowing the dependence of C on 

Pe, it is easy to follow the changes in the size distribution function of particles in the cross section X = const during 

centrifuging. Our results of computer-aided modeling show that in the main part of the ingot the maximum of the 

distribution function shifts toward low values of Ka with a simultaneous decrease of its value. The resultant curves 

(at the moment re) differ substantially from each other in different cross sections X = const. These data may serve 

as a criterion of the adequacy of the model when it is identified using experimental data. 

The theoretical analysis of high-temperature centrifuging made in the present work may be of help in 

designing facilities for melt purification. The corresponding numerical procedures may be used directly for 

prediction of purification of metal ingots from oxides and gas bubbles. The mathematical description supplemented 

by the mechanism of solubility of graphite impurity allows modeling of the complicated processes of practical 

importance in the manufacture of iron castings. 

N O T A T I O N  

Dimensional quantities: r, x, cylindrical coordinates; r h and re, time of the heater action and the process 
duration, respectively; ~o, rotational speed; l and ro(x), crucible length and width; 0, temperature; 0, absolute 

temperature; 00 -- 0 at r = 0; 0/, melting point; 0h, heater temperature; p.,  density of nonmetallic impurities; L, 

latent heat of phase transitions; q, heat or concentration flux density; v, velocity of floating up of the particle; A, 
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impurity size; d, diffusion coefficient. Dimensionless quantities: R, X, coordinates; t, time; T, temperature; H, 
enthalpy; Q, flux density; V, velocity; D, diffusion; Kv, viscosity; Pe, Pr, Ko, Kp, Ka, similarity parameters. 
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